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Abstract. The exact propagator beyond and at caustics for a pair of coupled and driven 
oscillators with different frequencies and masses is calculated using the path-integral 
approach. .]he exact waveiunctions and energies are also presented. Finally the propagator 
is re-calculated through an alternative method, using the (-function. 

1. Introduction 

Recently some interest has been shown in the quantization of the coupled and driven 
harmonic oscillator 11-31. In fact this potential can describe situations in many areas 
of physics such as superconducting quantum-interference devices [4], quantum non- 
demolition measurements [SI and magnetohydrodynamics [61. 

The purpose of the present paper is to discuss the problem of two harmonic 
oscillators with different frequencies and masses, which are coupled through an 
arbitrary strength parameter; As far as we know, until now this problem has been 
considered only in the case of equal frequencies and masses [l-31, and for a particular 
strength of the coupling parameter [2]. 

This paper is organized as follow: in section 2 we calculate the propagator beyond 
and at caustics; in section 3 we obtain the normalized wavefunctions and energy 
spectrum; in section 4 we compare our results with previous ones by studying a 
particular case; in section 5 the propagator is calculated by an alternative method 
using the [-function approach. In section 6 we make our final considerations. 

2. Propagator beyond and at caustics 

The Lagrangian that will be treated here is written as 

L = 1 ( m,P)[Xf - m:xf + 2 ( x (  t ) /  m,b, I - Ax, x2 
1-1.2 

t Permanent address. 
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which represents a pair of coupled and driven anisotropic harmonic oscillators. In this 
section we will use Feynman's approach to quantization. The propagator is written as 

K(x",  x'; 7 )  = 9 . ~ ~ 9 . ~ ~  exp I 
where x = (x,, x2) and 9x,9x2 is the functional measure. 

In order to quantize the above potential we will make some coordinate transforma- 
tions so that we map the Lagrangian (1) into that of a pair of free particles. The 
decoupling transformation is given by 

(m/m1)"2 cos (m/m,)'l2sin + y ,  

where m is an arbitrary parameter with dimension of mass. This leads us to the new 
Lagrangian 

(4) 

-(m/m,)l/* sin (m/m2)'l2 cos 6 y2  (3) IM = I  I /  I 
L'= (mP)(&+Y:) - ~ - P Y : -  Y Y , Y ~ +  F,Y,+F,Y, 

where 

a=(mo:/2)cos2$+(mo:/2)sinz$-(hm/2J",)sin(2$) ( s a )  

p = ( m w : / 2 ) s i n 2 ~ + ( m o : / 2 ) c o s 2 $ + ( h m / 2 ~ ) s i n ( 2 $ )  ( 5 6 )  

y =  (m/2)(o:-w:) s i n ( 2 $ ) + ( h m / G )  cos(24) (SC) 

and 

F, = J", f, cos $ -J", f2 sin $ 

F 2 = J " , f , s i n $ + ~ f 2 c o s $ .  

Also, the path-integral measures changes (9x,9x2 = J9y,9y2)  through a Jacobian that 
is given by: J = G / m .  In order to eliminate the coupling between y coordinates, 
we impose the condition y = 0, and so 

tan(2$) = ( 2 A / G ( o : - w : ) ) .  (6) 
Solving this to obtain the decoupling angle $,we find two solutions which are equivalent 
and only interchange the role of the new coordinates y ,  and y,, so that no physical 
difference appears between them. One of the solutions is 

cos $=[(1+R)/2]"2 ( 7 0 )  

with 

m,m2(w:-o:)2 

-/4h2+ m,m2(u:-o:)2 ' 

R =  -/ 

With this solution we calculate a, p. F, and F2, to obtain the Lagrangian 

L = ( m / 2 )  1 [Y:-fl:y:+(2/m)F~d (8) 
1=1.2 

where 

fl: = ( I/~)[W:+W:-[(W: - ~ : ) ~ + 4 A ~ / m , m , ] ~ / * I  (90) 

fl:=(1/2)[o:+o:+[(o:-w:)'+4A'/m,m2]'/'] (96) 
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and 

Fl =- fi( l  + R)'I2--  f2(1 - R)'12 

F2= J " , J l (  1 - R)'/'+ J?;r/z;;;;f,( 1 + R)"*. 
(9c) 

(9d) 

At this point we have reduced the problem to that of two driven harmonic oscillators. 
We can, therefore, use the expression for the propagator for this system as given in 
Feynman and Hibbs [7]. For later convenience, we set f (  1")  -f" and f( 1 ' )  =f', for any 
function f (  1 ) .  where f 'and 1"are the initial and final instants. Furthermore, we remember 
that the total propagator is written as 

K b " ,  Y ' ;  7) = (J";/m)K,(y:, Y ! ;  7 ) K 2 ( A ,  A; 7). (10) 

The desired propagator is obtained by returning to the original coordinates 

Using the expressions for the propagator of a driven oscillator [7], substituting this in 
(IO), and after lengthy but straightforward calculations, we can compute the propagator 

x exp{The above expressions with 1-2 and S+ -S} 

where we define S = sin +, C = cos #I and 
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in order to simplify the expression of the propagator. However, as we can easily verify, 
this propagator diverges for certain time intervals, so, it is necessary to calculate it 
beyond caustics by applying the extended Feynman’s formula [ 8 , 9 ] ,  obtaining 

x exp[-(i.rr/2) Int(u;/.rr)] (14) 

with U; =%T. and Int(u;,/?r) stands for the greatest integer which is less than or equal 
to uJn. But the above propagator is only valid for time intervals between the successive 
caustics when uj = k d k ;  EZ). At caustics it is necessary to use a modified semigroup 
property of the propagator in order to calculate it [ 9 ] :  

Kj(y:‘,y:; u~=k,.rr)=exp(-ik,.rr/2)1Kj(y:,yi; t ” - t ) l  

+m 

xlKi(y,,yl; f - t ’ ) l  I-m dyj 

xexp{(i/h)[S,,(y:,y,; f”- t)+S&.y:; t - f ’ ) l }  (15) 

where SJ.) is the classical action functional. Evaluating the integral in (15) with the 
help of equation (14), we obtain the propagator at caustics 

K,(y:‘,y:; u!=ki.rr)=exp(-ikj.rr/2) exp{(i/2h)[ii(vi-2J;;;y;)]:.} 

x S[sin(n,(t- t’))yY -sin(aj(t”- t))yI]. (16) 

Here we observe that the appearance of the Dirac delta function is understood, in 
terms of Feynman’s method, from the existence of an  infinite number of classical 
trajectories at caustics. 

As the frequencies a, and a, (in general) are different then, for a given time 
interval, there are many different situations in which we will construct the total 
propagator; they are 

K ( x ” ,  x’; T )  = ( J “ , / m ) K , ( u ,  # k,.rr)K2(u22f k2n) (17a) 

K ( x ” , x ’ ;  ~ ) = ( J m , m , l m ) K , ( u , Z k , . r r ) K , ( u , =  k 2 v )  (17b) 

K(x”,  x’; T ) = ( G / m ) K , ( u ,  = k , v ) K 2 ( u 2 =  k2.rr) ( 1 7 4  

( i7c)  -. 
K ( x “ , x ‘ ;  T ) = ( V ” , m 2 / m ) K l ( u , = k l . r r ) K 2 ( u 2 #  k,.rr) 

where K i ( u j )  E K,(x” ,  x’; u<). For each above possibility we can use the propagators 
(14) and (16) in order to obtain the total propagator. 
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3. Energy and wavefunctions 

In  this section we calculate the wavefunctions and the energy spectrum. For this we 
will make use of the expansion of the propagator in terms of the wavefunctions 

m 

K(Y:,Y:;  T I =  C +E,(Y:, 0qjn , (y : ,  f") (18) 
* , = O  

and with help of Mehler's formula [lo] 

exp[-(u2+ 0 2 - 2 u u z ) / (  I -z2)] 

m 

= (1  -z2)'I2 exp[-(u2+u2)] (zn/n!)Hn(u)Hn(o) (19) 

with u=(mCl,t'/fi)l/2y:, u=(mf12,t"/fi)1'2y:, z=exp[- ihf i ,~]  and n = n , ,  we can 
rewrite (12) in the form of (18) and so obtain the wavefunctions 

0-0  

$",&I> x,, t )  

= exp{-i[(n,+1/2)n, +(n,+1/2)n,]f}2~'"'+"2'/~ 

From the above expression it is easy to see that the energy spectrum for the non-driven 
case ( f ,  =f2 = 0 )  is given by 

En,,"> = ( n ,  + 1/2)hRl + ( n , +  1/2)hC12. (21) 

This energy spectrum shows us that there will exist degeneracies, provided that the 
frequencies n, and n2 are related conveniently. In this case we will have E.,,.,= Eni,ni 
and so we come to 

An,n ,+An, f12=0  or P n , / A n , = ~ , / ~ ,  (22) 

where Anj = ni - nj. As the ni's are integers, then any time that the rate ofthe transformed 
frequencies is a rational fraction the system will have degeneracies. As the frequencies 
0, and n2 are functions of all parameters in the Lagrangian we see that, when certain 
relations between the parameters hold, the system will be degenerate. 
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4. Particular cases 

Now we calculate the particular case in which the two oscillators have the same mass 
and frequency and are non-driven. After this we obtain the case studied by Yeon et 
al [2], in order to verify our calculations in an explicit and known example. 

In the particular case we have the Lagrangian 

L = m(.i:+i:)/2 - mo2(x:+x:)/2 -Ax,x2. (23) 

Substituting the above parameters in the expression for the frequencies n, and R2 
given in equation (9), we obtain 

Cl: = 02+ A/m (24) 

and cos Q, = l/a= sin Q,, that corresponds to a rotation of 7r/4 about the coordinates 
origin. In this case the propagator beyond caustics reads 

* 2 -  2 -A/m 

(25) 

-2(x;x: +x;x: +x;x; +x;xl' 

x exp{-(i7r/2)[Int(nl r /  7 r )  + Int(n2r/7r)1}. 

with R I  and n2 given in equation (24). The propagator at caustics is written as 

K ( x " ,  x'; T )  = a e x p [ - i T ( k l +  k2)/2] 

x 8[sin(n,(t  - t ' ) ) (x; I  -x i )  -sin(nl(t"-  t ) ) ( x ;  -xk)l 

x S[sin(n2(t - t'))(x;I+x:) -sin(n2(t"- t))(x; +x:)l (26) 

and the wavefunctions are 

@n&,, x2, t )  

xexp(-(m/4fi)[n,(x1 

x Hn,[(mnl/2h)1'2(x, - ~~) lH. , [ (mn, /2f i )"~(x~ + x d .  (27) 

Furthermore, in the case treated by Yeon et a[ [Z], the Lagrangian that corresponds 
to their Hamiltonian (2.1) with vanishing driven forces, is given in our case by 

L = m(xi.:+ $)/2 - mo2(x:+ x:) + mo2x,x2 (28) 
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from which we can see that it is equal to our Lagrangian (23 )  only if we make the 
identifications w 2 +  2 0 2  and A +  -mo2. Taking this care we recall the energy spectrum 
of the cited paper, because the frequencies (24)  become n:=02 and n : = 3 0 2 ,  so 

(29) &,,.,= [ ( n l +  1/2)+J5 ( n 2 +  1/2)1hw 
as obtained in equation (6.10) of [2]. 

5. 6-function approach 

Up to now our solutions have utilized path-integral methods. Now we will perform 
an altemative calculation of the propagator (12). In this alternative approach use is 
made of a l-function to calculate the determinant for a given differential operator. 
This is an interesting technique that was recently applied in similar types of problems 
[ll, 121, and that has been used extensively in  quantum field theories [ 1 3 ] .  

In order to use such an approach we shall do the usual expansion of the trajectory 
[7] about the classical configuration 

X(f) = 4f)+ df) (30) 
where x G l ( t )  is the classical solution and q ( t )  is the quantum fluctuation that obeys 
the Dirichlet boundary conditions 

Ir(0) = o =  $ ( T I  (31) 

Substituting ( 3 1 )  in the expression ( 2 )  and using the classical equations of motion, 
with r being the time-interval between the initial and final points of the trajectory. 

we obtain 

K(x",x';  T ) =  F ( T )  exp((i/h)SCI) (32) 
where S,, is the classical action. Which can be obtained by using the classical solution 
of the harmonic oscillators with frequencies a, and Q2 calculated as above and then 
returning to the original coordinates. 

Furthermore it is not difficult to see that the pre-exponential factor is written as 

(33a)  
However it is more convenient to deal with convergent integrals rather than 

oscillatory ones. This can be achieved by making a continuation to an imaginary time, 
followed by a Wick rotation. So we have 

@ = i f  d/dt  = id/dp Z = i r  

which can be substituted in expression (33a)  for the pre-exponential factor. So, after 
straightforward calculations we find 

F ( V =  1 97 exp {-(Wfi)  I d P v ' ( P ) b ( P ) }  (336)  

with the defined quantities 
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and 

m2(-d/dp2+ w:)  

m,(-d2/dp2+ w:)  
A 

Now we can diagonalize the operator D by using the transformation matrices in 
(3) (denoted M). For this we make the transformation 

q=(h/m)‘l’Mp (35) 

so that 

with 

ID’ = MTDM. 

This diagonalized operator is given by 

-d2/dp2 + fl: 
0 

(37) 

where 
as being proportional to the determinant of the operator D’, 

and 0: are given in equation (9) and the pre-exponential factor is identified 

F ( X )  = J“, Cldet D’1-I (39) 

C is an arbitrary constant to be determined and is associated with the phase of the 
propagator. Considering the determinant of the operator D’ as the product of their 
eigenvalues, it is easy to see that it diverges. Some regularization must to be done in 
order to regularize this quantity. The regularization scheme that we choose here utilizes 
the 5-function. 

The generalized (-function for a given operator is defined as 

l(s)=LA;’ (40) 

and after necessary analytical continuation [14], it can be shown that [ I l ,  121 

det D’= e~p[-(dJ/ds)l,=~]. (41) 

On the other hand, the eigenvalues of the operator D’ are given by 

~ . , = ( n , n / Z ) ~ + n :  and ~ , , ~ = ( n ~ n / X ) ~ + n :  (42) 

SO that we can obtain the determinant from 
m m 

and each product can be obtained from a <-function calculation. However, for con- 
venience, we decompose the eigenvaiue E,,, ( j  = i, 2j, so ihai 
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with 

et,=(n,7r/X)*in, (44b) 
and, using the generalized Riemann [-function [12], defined as 

m 

[ n ( s , a ) =  1 ( n + a ) - ’  Re(s)> I .  (45) 
“=O 

From equation (44a) we see that we must calculate four determinants. For a given e:, 
the generalized 5-function is given by 

= (~/x)-’[~,~,(s ,  *i (X/r )n j )7  (inj)-* (46) 
which has been manipulated in order to use the generalized [-function whose sum 
begins in nj = 0. Using now the property of the generalized 5-function [ 151 

Ln(s =0, a )  = 1/2-a 

dCn(s, a)/ds~,=o=Inr(a)-(l/2)ln(27r) (47) 
and after some straightforward calculations we obtain 

which, after the use of the identity, 

the substitution of (48) in (44a) and the use of the initial value condition for the 
propagator 

lim K ( x ” , x ’ ;  ~)=S(x”--x’ )  (50) 
7-0 

gives the pre-exponential facto1 

where we have used that X = iT. We can see that it is really the correct pre-exponential 
factor as calculated above, using the Feynman approach, in equation (12). 

6. Conclusions 

In this work we have solved, both by a path-integral approach and by a [-function 
approach, the quantum mechanical problem of two coupled harmonic oscillators with 
different masses and frequencies. So, we have enlarged the list of quantum mechanical 
systems that can be exactly solved through these methods. Using Feynman’s method, 
we have also calculated the propagator beyond and at  caustics. 

The wavefunctions in general, and the eigenvalues in the particular case of a 
non-driven system, were calculated and compared with previous calculations. 
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A remarkable feature is the appearance of degeneracies in the energy spectrum, 
provided that certain relations between the potential parameters hold. This suggests 
the existence of some hidden symmetry in the system, in analogy with the accidental 
degeneracy appearing in a two-dimensional isotropic harmonic oscillator. 
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